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We present a weaker notion of Gibbs measures by requiring that only an 
almost everywhere absolutely summable potential is given. ~ i s  has r ~ n t l y  
appeared in the context "Gibbsian versus non-Gibbsian measures". We give a 
first exploration of the main features of this weaker notion. We conc~trate on 
the questions of where do weakly Gibbsian measures appear and what remains 
of their thermodynamic description. 

KEY WORDS: Renormalization group pathologies; Gibbs measures; trans- 
formations. 

1. I N T R O D U C T I O N  

Recent years have produced a remarkable effort for understanding the 
occurrence and properties ofnon-Gibbsian states, contrasting the earlier held 
belief that in most cases the relevant states can be described m t e ~ s  of Gibbs 
measures. ~ e  main sources of non-Gibbsian states are real-space renor- 
malization group theory, t ~5. ~6, 2o, ~o, 9, 8) interacting particle systems, (22, 28, 37) 

and other fields of applied p robab~ty  theory, tz 12,27,28,31,36, 19,32, 17, 11) 

Recently it was realized that at least for some non-Gibbsian states a Gibbsian 
description in terms of an interaction potential can be restored. More 
precisely, in refs. [ 5, 1, 30] a fiall measure subset of co gurations is con- 
structed on which a potential can be defined. 

In this paper we are taking up this approach and we are asking in 
what generality we can give a working definition of weakly Gibbsian states 
that are beating the main features of usual Gibbs measures. First we intro- 
duce the notion of weakly Gibbsian measures in a general context. ~ e n  we 
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will concentrate on non-Gibbsian measures obtained by transtb~dng 
Gibbs probability measures, and give a criterion for their weak Gibbsian- 
ness. We a e, by using stochastic-geometric methods, that the occurrence 
of weakly Gibbsian states is ubiquitous in typical Pirogov-Smai situations. 
We end by discussing the thermodynamdc functions and their relation in a 
variational principle. Also, many open questions are discussed. 

2. D E F I N I T I O N  OF W E A K L Y  G I B B S I A N  M E A S U R E S  

Om the d-dimensional lattice Z d a spin variable a ( x ) e  S belonging to 
a fixed finite set S is assi~ed to each site x ~ Z d. ~ e  full configuration 
space is/2 = S za and it consists of all configurations a = (a(x) ,  x ~ zd) .  For 
an ,4 c Z d we write [2A = S A, and the restriction of a a e ~'2 to OA is denoted 
by a A. The s~mbol 8 is used fior the collection of all finite subsets B c Z d, 
and we put IB[ for the cardinality of B. For A c Z d, A ~ =  ZdX.\A stands for 
its complement, s'2 is equipped with the product topology and ,~Ath its 
associated Borel a-field ~ .  For A c Z ". ~ c ~ is the sub-a-field of all 
events occurring in A c Z d (generated by the fianctions a ~  a(x) ,  x e A).  
Lattice translations 0x, x e Z  d are first defined on configurations by 
(Oxa)(y) = a ( x  + y), and their obvious extension to fianctions on s'2 and to 
probability measures on (~2, ~:~r) are further also considered. 

We consider a non-empty translation invadant subset of configura- 
tions K c ~, which we assume to be a tail event (i.e., to be belonging to the 
tail field ~-~=(~B~e~,) .  We require that the configuration r/AaA~= 
( r l ( x ) , x e A ; a ( x ) , x e A O ~ K ,  whenever a e K ,  for all A e d  ~ and q e Q .  
Hence eveE," 1/e t~ can be approximated by elements of K (K is not closed 
if K #  ~'2). 

The elements of K will be viewed as typical configurations related to 
an interaction U #ven between the spins. This interaction is defined by a 
family of bounded functions UB" ~B "-* R, for B e ~. Each UB depends only 
on spins reside B, and we put U~ = 0. We assume that this interaction is 
translation invariant. More importantly, we assume that the energy of a 
configuration a ~ K due to the interaction of the spin at x e zd with the rest 
of the system is bounded: For each x e Z d and a ~ K, there exist bounds 
bx(a) < c.-~ for which 

I u~(a)l ~ bx(a) = bo(Oxa) (2.1) 
B ~ x  

~ e s e  bounds should be thought of as functions growing with the size of 
the "bad" cluster around x e Z a in which the co~gurat ion is "untypical". 
This will become clearer later on. For the moment it is useful to think of 
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the set K as consisting of configurations which in some sense resemble a 
reference configuration r~ t2  for which Zs~,~ I Un(r)i  < oo, uniformly in 
x e Z d. We therefore call r ~ K a "reference configuration" for the inter- 
action { Ue} s~o, if for all tr ~t'2 and A, B e g  we have 

i U~(~ra~)! ~ I U~(a)l c(v)+c~(v) (2.2) 

with c(r) < oo and SUpx~z~ Ze~x  cs(r) < oo. 
The Hamiltonian for a configuration tr~I2 on A ~g,  and free 

boundary condition is 

Ha(,7)= Y'. u,,(~) (2.3) 
B o A  

It only depends on tr A. Similarly, with boundary condition r~K,  the 
Hamiltonian 

H~a( o ") = ~ UB( O'A r A,') (2.4) 

stays well defined. In particular, the interaction energy 

Iv, w(O') = Hv,., w ( a ) -  Hv(a)  -- Hw(cr) (2.5) 

for finite sets Vc~ W= Z is bounded by 

Iv, w(O'vrvc) <~ ~ b V(ovrv  ,) (2.6) 
x E  lg 

with 

bV(rl)>~ ~ [ Un(q)[ (2.7) 
B~x 

B ~  Vc#~Y . 

and r/, r ~ K. 
The finite volume Gibbs measure with respect to the Hamiltonian H a 

is the probability measure on (g2, ~-) defined by 

y](o') = f 1~ -~ exp[ - /3H](~  if O'AC - -  ~ 'A c 

otherwise 

(2.8) 
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Here 

Z ~ =  ~ exp[ - f lH~(a)]  (2.9) 
o ' ~ K 2  A 

is the partition function (normalizing (2.8)), and fl is the inverse absolute 
temperature. Without loss of generality we have chosen the counting 
measure on S as a priori measure. Note that y~(K)= 1, since a,~r,~,eK 
whenever r e K. 

As usually, the Dobrushin operators )'a, A ~ d', can be defined as 

YA(f)(r/) = Y~(f) 

= f r (da) f(a) 

for all bounded ~'-measurable functions f on/2,  but only for r/~ K. Clearly, 
since ~,a(K)= 1, for every A' c A, 7,~ o YA, is well defined and the Dobrushin 
consistency ),,~ o YA, = Ya holds (i.e., the specification property). Notice that 
if f is a bounded and local function (that is, it only depends on the spins 
of a volume A), and if r e K is "a reference configuration", then 

lim 19,A(f)(r/t")) - yA(f)(r/)l = 0 (2.10) 
n --~ oo  

for all r/e K, where r/t"~ = r/a r,~,.n e K is a sequence of configurations corre- 
sponding t o  an increasing sequence of cubes {A,} of Z a. This is what 
remains of the notion of quasilocality of specifications. ~ 1o. ~) Quasilocality 
is a topological notion and it does not seem compatible with the measure 
theoretic approach taken here (see also ref. [ 1 ]). Nevertheless, one can 
seek to obtain quasilocality on smaller spaces (in the same way as we have 
summability on a smaller space here). For details we refer to refs. [25],  
[ 24]: pp. 77-80, [ 11 ]. 

Inspired by the above, we introduce the following concept: 

Definition 2.1. We say that a probability measure v on (/2, ~-) is 
a weakly Gibbsian measure for the set K and the interaction { Us} s~ s if 

1. v(K) = 1 

2. v ( f )=Jry~ ( f ) v (d z )  for all bounded ~'-measurable functions f 
and all .4 ~ g. 
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Remark 2.1. It does not seem straightforward actually to charac- 
terize the (K, { UB}) for which an infinite volume weakly Gibbsian state 
exists. It may happen, for example, that although y ~ ( K ) =  1 for each r ~ K 
and A , ~ 8 ,  we have (lim, y~ )(K)=0.  The problem is that an accumula- 
tion point of convex combinations of the finite volume Gibbs measures 
(2.8) might fail to verify condition (1) of Definition 2.1 (condition (2) is 
obtained by construction). 

We have, however, the following result. Denote QA,.o Ya = ~KQA"(d 'c )  YrA, 

with some distribution Q of boundary conditions. 

Proposi t ion 2.1. Suppose v=lim. ~OA~,OyA,, QA~,(K) = 1, and that 
there are some Akt(x) in ~'A,t.,:)such that 

K =  U N Ak,(x) (2.11) 
1 k > !  

If QA; ~ 7A,(A 7,t)are summable in k, uniformly in n, then v(K) = 1 and v is 
weakly Gibbsian. 

Proof. This follows by 

v(K ~) ~ ~ v(A~,) -~ 0 (2.12) 
k > !  

as 1-, oo. I 
This is the situation in the examples in refs. [5, 1, 30] (see also 

(2.16)-(2.18) below, and the set-up of Section 3). 
In Preston's book (ref. [33 ], pp. 33-45) a rather general condition for 

the existence of an infinite volume Gibbs measure consistent with a given 
specification was given. Even the structure he used is not general enough 
for our purposes, and thence his results are not applicable for weakly 
Gibbsian measures. 

Remark 2.2. If in particular K=/2 ,  i.e. we are dealing with an 
absolutely summable interaction on the full configuration space, then the 
weakly Gibbsian measure v is in fact a Gibbs measure (in the usual sense). 
Clearly, if { Us} is a uniformly short range interaction, i.e. U8 = 0 whenever 
diam B > R for some R > 0, then K =/2. 

Remark  2.3. 
2.1 is equivalent to 

In terms of conditional distributions, (2) in Definition 

(2.13) 
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where the right hand side is defined only for z e K. The left hand side is the 
conditional probability for the weakly Gibbsian measure v in A which is 
defined almost surely. Therefore the equality holds almost surely. 

Remark 2.4. Given a weakly Gibbsian measure v for (K, { Us} ) we 
can ask whether another, "non-equivalent" (K', { grn}) exists for which v is 
also weakly Gibbsian. It is clear that one can find sometimes a different 
K:~ K so that v is weakly Gibbsian both for (K, {Us}) and (K, {Us} ). 
(For instance, this happens if Us are invariant under a symmetry operation 
R, and R = R(K) 4= K.) In this case we can take the "largest possible" set K. 

Changing the potential is, however, a more subtle problem. It is rele- 
vant for the question of multivaluedness of renormalization group trans- 
formations (see the first fundamental theorem in ref. [ 10 ] ). If we know that 
a transformed measure v is weakly Gibbsian, the question still remains 
whether the map v ~ { Us} is multivalued or not. The broader question is 
about how to fix the notion of physical equivalence in the weakly Gibbsian 
context. Our  remark here is that it can happen that v is a weakly Gibbsian 
measure for some (K, { Us}) and at the same time v is a bona fide Gibbs 
state for an interaction { Era}, where { Us} ~ :~o, { grs} ~ :~t, and { Us} is 
physically equivalent with { Era} in Ruelle's sense (see p. 929 in [ 10] for 
notation and details). As an example, take cubes A, c Z d, d >  2, of sides 
n -  1, 3, 5 .... , centered around the origin, and define for Ising spin variables 
a (x)~  { - 1 ,  + 1} 

a(x)  if B = { x }  

if B=A,+y ,  for s o m e y ~ Z  a 

and some n = 1, 3, 5, ... 

otherwise 

(2.14) 

We can choose ~ finite such that { Us} is physically equivalent (in Ruelle's 
sense) to { g r s = 0  }. So the Bernoulli measure v with v(tr(x)= 1)=  1/2 is an 
infinite-temperature Gibbs state while 

1 I 
B ~ 0  n = 3 , 5  . . . .  - - x ~ A  n 

converges v-almost surely (for d > 2). 

(2.15) 

R e m a r k  2.5. Remarks 2.1 and 2.4 above are examples of questions 
asking what remains of the standard theory of Gibbs states in the context 
of weakly Gibbsian states. Here we give a list of "first", most immediate 
i, 
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problems one has to face when taking on the weakly Gibbsian set-up 
(on the solution of which the proof of the "title statement" of ref. [ 1 ] 
would also depend): 

(i) the problem of existence of infinite volume weakly Gibbsian 
measures (Remark 2.1 ) 

(ii) the problem of physical equivalence of interactions (Remark 2.4) 

(iii) equivalence between the Minlos-type definition of an infinite 
volume weakly Gibbsian state and the DLR-type definition given above 
(see (2) in Definition 2.1 ) 

(iv) the meaning of a macroscopic state, extremality and phase 
diagram 

(v) when' is an interaction weak?; can one make a theory of unique- 
ness of weakly Gibbsian measures? 

(vi) variational principle for weakly Gibbsian measures 

(vii-) large deviation theory to weakly Gibbsian measures 

Remark 2.6. A last remark concerns the relevance of developing a 
theory of non-Gibbsian states. Should one not be content merely with 
seeing them appear in physically interesting models? Part of the answer 
undoubtedly depends on how rich the resulting theory is, that is, to what 
extent one is able to find a solution to the problems listed in the previous 
remark. Examples can play an important role here, for instance in suggesting 
additional natural assumptions on (K, { UB} ). It may be useful, for example, 
to assume that 

n 

K =  U K~ (2.16) 
i - - I  

K,= U Kt~(x) (2.17) 
1 

1 ~ I(r176 >7 l - e }  (2.18) 
K l ( x )  = O'~.[~'Vk~l[-~k[ y+Ak~ x 

for appropriate {An}~176 1.= , e>O, and a fixed finite set {r(~ ",=t of 
"reference" configurations (I(.) is the characteristic function). We will see 
this structure appearing in the following section. 

More insight might be obtained from the theory of Gibbs measures for 
systems of unbounded spins. There too one has to dispose of a set of "bad" 
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configurations (which are growing too fast at infinity). One may ask how 
to find a correspondence with the notions of superstable and (super)regular 
interactions in order to find useful and natural conditions on upper bounds 
of the Hamiltonians and interaction energies (see refs. [ 34, 35, 21, 23 ]). In 
Section 4 below we will investigate some of these points for problem (vii) 
of Remark 2.5, on what remains of the variational principle. 

3. ON A CLASS OF WEAKLY GIBBSIAN STATES 

The purpose of this section is to describe a framework in which the 
notion of weakly Gibbsian states naturally arises, and to give a condition 
under which weak Gibbsianness holds. In this section we consider a class 
of weakly Gibbsian measures which appear as transformations of low 
temperature Gibbs measures. 

Consider, for simplicity, a translation invariant nearest neighbour pair 
interaction U and suppose that z ~/2 is a translation invariant ground 
state, .i.e., for all a ~ O, A ~ ~', r/= aa za~ 

~rt"(a I z ) :=  ~ [ U(rl(x), rl(y))- U(a, a)] >10 (3.1) 
x ,  y E Z  d 

I x - -  Yl == 1 

holds, and where we have chosen z(x)=a .  Using this r as a boundary 
condition we consider the Gibbs measure p~.A(tr) for a finite volume A 
and inverse temperature ft. It is known that for a large class of models at 
low temperatures (within the realm of the Pirogov-Sinai theoryt39)), the 
infinite volume measure p~ exists independently of the particular sub- 
sequence chosen in the thermodynamic limit. We can thus take an increas- 
ing sequence of cubes A~ centered around the origin and assume that 
,up, A --+/z p . ~  ~ A stochastic-geometric characterization of the low temperature 
phase/z~ can be done relatively easily when the low temperature phase is 
a perturbation of the stable ground state (see e.g. Chapter 18 in ref. [ 13 ], 
and also ref. [ 14]). When r is stable, typical configurations o f / ~  consist 
of, at least for sufficiently large fl, infinite oceans of r-valued sites with 
islands of arbitrary size and shape inside, on which the configuration is dif- 
ferent from z. The/~-probabil i ty of the origin belonging to such a dis- 
agreement cluster of size (say, diameter) kdecays  exponentially fast as 
k--, oo, with a rate m = m(fl) that goes to infinity as the temperature drops 
to zero. In two dimensions, at least for certain models, this picture remains 
valid in the whole coexistence region. Again, for details and precise 
statements we refer to refs. [ 13 ], [ 14 ], and to [ 4] in particular for the two 
dimensional Ising model. 
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Consider now a sublattice r7/d (r >. 2) on which we fix an additional 
internal boundary condition (it can also be seen as a constraint), i.e., we 
take a ~ ~ I2 and define 

/1~/~A.(') =ITS, A.(. l a = ~  on A . r ~ r Z  d) (3.2) 

In the same low temperature context as above, it seems natural to expect 
that the stochastic-geometric characterization of p~ cA. is very much similar 
to that given above for/t~. A., at least when ~ in some sense resembles z. 
This last proviso that "~ resembles z" is certainly necessary for the state- 
ment that "p 3. ~ resembles ,, ~" # e-p , and we now make this more precise. 

Write Or := S rza and consider the growing sequence of volumes Vk = 
Ak n rZ a, k = 1, 2, ..., together with their shifts Vk(X) = (Ak  + x)  c~ rZ a, 
for x e r7/a. Remember that z (x )  = a, for all x ~ Z d, with some a ~ S. The 
frequency of agreement between ~ e Or and z in Vk is measured by 

Define now 

1 
agr,. x(~, r ) -  IV~l x z+vk I ( ~ ( x ) = a )  (3.3) 

K~(x)  = { ~ e I2," Vk > I agrk, x(~, r) > 1 - e} (3.4) 

K~ = U K~(x) (3.5) 
1 

for a suitable e > 0. Clearly, K ~ is translation invariant and a tail event. For 
each ( e  K ~ and every x e rZ d, there is an/(~,  x ) <  Go such that 

agr,..~(~, r ) >  1 - e  (3.6) 

whenever k > 1(~, x). In other words, ~ e K ~ resembles r (but not uniformly) 
when considering the frequency of agreement over large enough regions 
around any x ~ rT/a. 

To obtain now a condition in terms of stochastic-geometric properties, 
we consider for each couple of configurations (a, a ' ) ~  I2A. X I2A. the set of 
sites x ~A, ,  for which (a (x ) ,  a ' ( x ) ) ~ - ( a ,  a). A path of disagreement (with 
respect to the ground state) joining a region A c A .  with a region B c A.,  
A ~ B = ~ ,  is a sequence Xo ~ A,  x l, x2,  ..., x .  ~ B of ordered nearest 
neighbour sites x j ~  A n for which (a(x j ) ,  a ' (x j ) )  :/: (a, a), for all j = 1, 2, ..., n. 
Define the event 

Hn(A, B )- {(cr, cr')~2A X ff2An" 

there is a path of disagreement from A to B } (3.7) 
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Obviously, all of the above can be repeated for the cubes A,(x)= A, + x, 
x e Z d obtaining thus the analogues H~(A, B) of H~ B)=H,(A, B). In 
each of the cubes we consider V,(x), and define for r e t2~ 

~k,x(y) = {~(y ) if yeVk(x)  
if y e rZ d\ Vk(x) (3.8) 

D e f i n i t i o n  3.1. We say that p~ is a stable low temperature phase if 
there exist real numbers C = C(fl) < oo and m = m(fl) > 0, with m(fl) --, oo 
as fl ~ oo, such that for each x e Z a 

• B)) < Ce - ' ' k  (3.9) 

uniformly in n, whenever n > k > 1(~, x), ~ e K ~, and whet:e O is the set of 
nearest neighbour sites to the origin, and B = A,(x)\Ak(x). 

In typical Pirogov-Sinai situations condition (3.9) is satisfied but we 
are not concerned with its proof here. 

We will now investigate what are the consequences of condition (3.9) 
of the stable low temperature phases for decimated Gibbs measures. Let us 
consider 

v~,.(~)= ~ p~,A (a) I(a=~ on V.) 
0 ~ QAn 

for ~ eOv .  
An important object to look at is the relative energy 

(3.10) 

%- vp..(r 
h:(~) =log ~ vp,.( ~-----Y ) (3.11) 

obtained in the situation of having ~ e g2v. changed into r Here 

~O(x) = {~a(X ) if x4:0 
if x = O  (3.12) 

Next we take a sequence of volumes D k c r~_ d constructed iteratively by 
adding single sites Dk =Dk~_l w {ak}, ak e rZd, with the properties [ak[ >i 
[a~_~[, a l - -0 ,  D o - ~ Z  and D l = { 0 } ,  and lakl ~<lxl, for all xerZ  d with 
Ix[ i> [a~_ ~[. Typically, for k ~- n d, Dk will have covered the set V.. We also 
put 

k~(X ) = {~(X)a ifif Xx ee Dkrz d\Dk (3.13) 
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It is useful to think of Dk as almost coinciding with some Vz, and then 
,r ~_ r k _~ (k') a. 

By telescoping (3.11) we get 

s(n) 
h,~(~)= ~ [h;(k~)- -hf , (k- '~)]  (3.14) 

k - - - I  

where s(n) is determined by the relation Ds~.)= V.. Note that o~ = z  and 
h~(~)=0. 

By putting 

�9 7,(~) = h~(~)  - h ; (~- '~ )  (3.15) 

and by defining the function (remember z(x)=a,  for all x) 

f.~'r =exp ( - f l  ~ [U(a, a(y))- U(~(x), a(y))]) (3.16) 
Y: l Y - -  xl  = 1 

we arrive at the following 

Lemma 3.1. F o r k > 2 w e h a v e  

" ,t,"( ~, ,r try, r f~,f)] Ok(~)=log[ 1 +v.k ~)/~t~,A.'J0 , (3.17) 

where 

" ~,kctr~,r ~.*r (r~,r -pea, e,,.d] (3.18) 1 / @ k ( ~ ) - - f l l l ,  An, J 0 lll3. A . . , . ,  )~ [e 

for some finite c > 0 (d is the dimension of the lattice). 
Here lu(J~ g ) = ~ ( f g ) - p ( f ) p ( g )  is the truncated correlation function. 

Proof. We write 

r v;~'"(k~)v~'"(*-~) v~'"(k~) 
y~,n((k~)O ) yrfl, n(k~ ) y~/,n((k_l~)O) (3.19) 

Moreover we have 

v ~ , , ( ( ~ ) o ) -  Z ~ , ~ / ~ ,  ~ (~r)/(~ = (,~)o on v.)  

I ( a=  (~ )  ~ on V , , ) = I ( a = k ~ o n  V , , \ { O } ) I ( a = a i n O )  

(3.20) 

(3.21) 

Hence, by an application of the finite volume DLR equations, (3.17) 
readily follows. II 
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Furthermore, one can show that this truncated correlation function is 
controlled by condition (3.9): 

Lemma 3.2. For all ~ we have 

I/~:~.(f~'e;f]'~e)l ~<const(fl) ~ ' ~  • A, , \Ak ) ]  (3.22) 

where const(fl) = 2e 4~ iitsll~, II Ull oo = SUpv,. v2~s I U(vl ,  v2)l. 

Proof.  By making use of the ideas in ref. [3] ,  or adapting almost 
word for word the proof of Proposition 2 in ref. [ 30]. I 

Hence we have 

Propos i t ion  3.1. If /z~ is a stable low temperature phase, then 
there exist some numbers 0 < c ( f l ) <  oo, and 8 ( f l )>0  with 8( f l ) - ,  Go as 
f l - ,  oo, such that 

I~Z(~)l  ~< c(/~) e -~/~)k (3.23) 

for all ~ E KT(0 ) whenever k > 1(~, k). 
The same analysis can be repeated for relative energies with respect to 

changes in the configuration at a site x # O, x ~ rZ d. 
We want to mention that in ref. [ 18 ] a similar condition on truncated 

correlation functions was considered to conclude that the transformed 
measure is a Gibbs measure. The difference from our results is that there 
a uniform control in ~ has been applied. 

By using Sullivan's method (Theorem 1 in ref. [ 38 ] ), we can construct 
then an interaction { UB} B~ rZ d SO that lim,, v~.,, = v~ (always assuming that 
this limit exists) is a weakly Gibbsian measure with respect to K =  K ~ and 
potential { UB}. This method was applied in ref. [ 30i to find that the pro- 
jection to the line of the + phase in the low temperature two dimensional 
Ising model is a weakly Gibbsian measure. In ref. [ 1 ] we find the proof 
in the case of decimation applied for the same measure. An interesting 
question (answered on the affirmative in ref. [ 1 ]) is whether the con- 
structed potential is the same for different ground states r tt). 

We believe that the scenario sketched here for decimation remains 
essentially unchanged for other (renormalization group-) transformations: 
If we have a pure phase in the Pirogov-Sinai situation, the transformed 
measure is at worst weakly Gibbsian. This would take care of a substantial 
part of the Griffiths-Pearce-Israel pathologies described in ref. [ 10 ]. 
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4. T H E R M O D Y N A M I C  F U N C T I O N S  A N D  
V A R I A T I O N A L  PRINCIPLE 

In this section we present results on thermodynamic functions of 
weakly Gibbsian measures, partly of a general validity and partly for the 
class of weakly Gibbsian measures obtained from transformations of Gibbs 
measures. We start with the general results and indicate when we switch to 
the particular class. Throughout this section the inverse temperature will be 
included in the Hamiltonian. Also, we denote by ~(K) the set of transla- 
tion invariant weakly Gibbsian measures for the set K, which contains 
configurations "typical" for an interaction { UB}. 

The energy function 

1 
E(a) = ~ 0  T~ UB(a) (4.1) 

is defined for each tr ~ K. For v ~ ~(K) we define the energy density as 
e(v) = v(E) 

Propos i t ion  4.1. Suppose v~#(K) such that v(bo)< ~.  Then 

e(v)=lim 1 ~ v(Us)=lim 1 (4.2) 

(limits are taken along increasing sequences of cubes). 

Proof. By translation invariance, for each A e 8 

1 1 
e(v)=T-~x~A a~xX T~-Tv(UB) 

1 
--I i1 E v(UB)+-~ E 

1 
E v(v ) 

B~.'r 
B ~ A C v ~ O  

(4.3) 

The last term is bounded by 

1 1 
xE E v(IV, E E v(IU, I) 

B ~ ( A + x ) C ~  A + x  9: A 

(4.4) 

for every A ~ 8. The second term in (4.4) is further bounded by 

1 
I AI I{x~A'A+x r A}lv(bo) (4.5) 
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which goes to zero, for fixed A, as A ~ 7/a. On the other hand, the first 
term in (4.4) is identical to 

Z v(IU~l) (4.6) 
B ~ 0  

B ~ d C # O  

and it goes to zero by taking A arbitrarily large. II 

P r o p o s i t i o n  4.2. Take v e ~ ( K )  with v(bo)< oo, and suppose that 
~ K satisfies the "reference" condition (2.2). Then 

e(v) = lim 1 A -~l v(H~a) (4.7) 

Proof. By comparison with the proof of Proposition 4.1, we must now 
check that 

1 IAI ~ .~xZ v(IUB(GAVA,)I)--*O (4.8) 
B ~ A " # O  

By using (2.2), however, this reduces to the proof of Proposition 4.1. II 

Proposition 4.3. Take v e ~(K) ,  and suppose that there exists a 
function ~g: N - ,  R +, monotonically decreasing and Y'.,~ ~g(n) n d -  ! < 00. 
Assume, moreover, that 

IIz, w(a)[ ~< �89 ~ ~U(lx- y [ ) [ fx (a )+ fy (a ) ]  (4.9) 
x E V  
y e w  

for all V, We S, V c~ W= ~ ,  with a non-negative measurable function 
f x (a)=f (Oxa) ,  v(fx)< oo, for all x e Z d. Then we have 

e(v )=l im 1 .t -~[ v( H ~a ) (4.10) 

for every r e K for which 

sup ~ ~([x - y [ )  fy (r )  < 
x y e Z  a 

(4.11) 
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Proof. Take a e K. We have 

I,~.A,(a) = ~ Us(tz) (4.12) 

B ~ A C = ( , ~  

By comparing with the proof of Proposition 4.1 it is clear that we must 
show that 

1 
V(IIA, A,(a,~VAC)I) ~ 0 (4.13) 

Ial 

The assumption allows us to split off this expression into two terms. First 
consider 

1 
~ ~ ( I x -  yl) v(f) 

2 IAI .'tEA 
y E A  c 

This is going to zero since we can split off this part further into 

(4.14) 

y' 7'( Ix - Yl) v(f)  = ~ ~u( Ix - Y[) v(f)  + 
x e A  x e  V 

E 
x ~ A \ V  

where dist( V, A C) ~ oc as A ~ ~,a and I vI/IAI ~ 1. 
Secondly, we must look at 

~ ( I x -  Yl) v(f) (4.15) 

1 
2 IAI x~A ~(ix-- Yl)fAY) 

y ~ A  c 

(4.16) 

But this can be treated in exactly the same way if we have indeed 
hypothesis (4.11 ) on z e K. II 

Remark 4.1. The point Proposition 4.3 makes is that we have 
here a situation analogous with the case of unbounded spins, where the 
hypothesis on Iv, w is referred to as a regularity condition on the interac- 
tion. It is reasonable to expect that these conditions (as formulated in 
Proposition 4.3) will be satisfied in interesting examples. We think Offx(tr) 
as fx(tr) = l(x, a), tre K (see (3.6)). 

For v e ~(K), the specific (negative) entropy 

s(v) = lim 1 ,~ -~[ ~ v(a)log v(a) (4.17) 
ere QA 
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exists in I - l o g  [SI, 0]. For  two probability measures v~ and v2 on 
(I'2A, ~ ) ,  the relative entropy of v~ with respect to v2 is 

S A ( Y l  ] Y2)--'~ E Yl(O') log yl(O'-''~) (4.18) 

(The usual conventions apply). We always have Sa I>0, and SA(VIIV2)=O 
if and only if v i = v2. 

Consider now a bona fide Gibbs measure/z on (/2, ~-) with respect to 
a Hamiltonian Yr. The finite volume specification for a fixed boundary 
condition a ~ S is 

1 
p](a) = -  exp[ - 9ff,~(o')] (4.19) 

Let :ira. v be a probability kernel from (~a ,  ~a)  to ( ~  v, ~v), such that A 
and V are subsets of lattices having the same dimensionality, and with 
V c A, and r[ V[ = [A [. Define v~, =/~,~ :irA. v, and let v v =/~,~ T, where/~,~ is 
the restriction of/~ to (~2a, ~a). By using the monotonicity of the relative 
entropy with respect to a (stochastic) transformation T we are led to 

P r o p o s i t i o n  4.4.  Take a sublattice ~ of Z d with dim ~V" = d, and 
pick a van Hove volume V c ~ .  Then we have 

lim 1 s I = 0 (4.20) 

In particular, this holds when v e ~ (K)  is a weakly Gibbsian measure 
obtained from a Gibbs measure p (i.e., V=l~T) under a transformation T 
(for example, a decimation as in the previous section). 

Take T corresponding to a decimation transformation: 

TA.. v.(a, ~ ) =  I-I I( a( x) = ~( x) ) (4.21) 
x ~ V,, 

for a e/2a,  and r e /2 v,- We take v =/~T, a weakly Gibbsian state obtained 
from a Gibbs measure /z. As already seen, v,~ =/tATa, v = (~T)a,  but 
moreover 

~'; =/*~(" I # = v  on rZa\V) Ta, v (4.22) 
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Here P A(" I~ = r o n  r~_d\ V) is the restriction to (/2A, ~'A) of/t  conditional 
of finding the configuration r ~ K  outside V (but on the sites of the 
decimated lattice rZd). Therefore, by using again the monotonicity of 
relative entropies, we obtain 

P r o p o s i t i o n  4.5.  
and �9 ~ K. Then we have 

Let V be a van Hove volume of ~ (dim ~ = d), 

lim 1 S (v l (4.23) 

Now we turn to investigating the pressure (free energy). The set K and 
the potential { Us} are given as in Section 2. 

P r o p o s i t i o n  4.6. Suppose v=ltT, the decimation of a Gibbs 
measure p, is weakly Gibbsian with respect to (K, { Us} ). Furthermore, we 
assume that for v e #(K)  we have v(bo)< oo. Then the limiting specific free 
energy (.or pressure) 

p = lim 1 v [-~ log Z~  (4.24) 

exists and it is independent of r ~ K, whenever e(v) = limv 1/1VI v(H~z) 
exists. The conditions in Propositions 4.2 or 4.3 provide sufficient condi- 
tions. 

Proof. For each V e 8 and r ~ K we can use the weakly Gibbsian 
measure v to write 

Sv(v I Y~) = Sv(v) + v(H~) + log Z~, (4.25) 

On the other hand 

lim 1 S (v (4.26) 

for every r ~ K, hence the proposition follows. II 

R e m a r k  4.2. From the proof of Proposition 4.6 it is evident that 
weakly Gibbsian states fulfilling the conditions above also satisfy the varia- 
tional principle 

-p=s (v )+e(v )  (4.27) 

822/89/3-4-7 
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We have, however, no converse statement of any sort. We expect that for 
a converse statement extra conditions will be needed on (K, { UB}) for 
producing a richer theory. 

Finally, it is interesting to observe that s(v § I v - ) v ~  0 (non-vanishing 
specific relative entropy) where v § and v -  are the projections to the line 
of the pure phases/~ § a n d / t -  of the planar Ising model (see ref. I 36 ] ). We 
believe, however, that v § and v -  are weakly Gibbsian with respect to the 
same potential, even though further decimations yield two Gibbs measures 
for two inequivalent potentials, as shown in ref. [26] .  
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